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PROLOGUE

In the early stages of the research presented here, the only in-
tention of the authors was to findan analytic expression for the volt-
ampere characteristics of spherical and cylindrical probes for suf-
ficiently general types of potential functions and to check our calcu-
lations for the Maxwell-Boltzmann distribution against the self-con-
sistent numerical calculations of Laframboise. In the course of this
investigation the classic works of Mott-Smith and Langmuir were sub-
jected to a critical analysis, in terms of the boundary conditions en-
countered in ionospheric experiments. This analysis revealed serious
defects in Langmuir's finite sheath model and put certain limitations
on their orbital-motion-limited theory. Furthermore, there seemed to
be no agreement among the existing theories as to the mathematical
definition of the "sheath' which is the central part of any theory
describing the plasma-probe interactions. It was therefore felt that
it would be of general benefit to examine in some detail the basic physics
of the interaction between the probe and the surrounding plasma. The
first two chapters and the beginning of the third chapter of this report,
thus, are in the nature of a textbook discussion and should be read in

this spirit.
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I. INTRODUCTION

The collisionless theory of electrostatic probes immersed in a
plasma involves the two following basic physical concepts:

(a) The concept of a "sheath' surrounding the probe, in which

the potential change from that of the plasma to that of the
probe occurs, as propounded by Langmuir,l and

(b) The existence of distinct velocity distributions of the

electrons and positive ions within the region of interest,

the sheath.
The sheath is fully described when one knows both velocity distributions
and the potential distribution in the sheath.

These two properties of the sheath are, of course, intimately inter-
related. In principle, therefore, the problem of deriving the volt-
ampere relations of an electrostatic plasma probe becomes one of a
simultaneous self-consistent solution of the Pcisson and Vlasov equations
and to give the potential and velocity distributions, subject to appropri-
ate boundary conditicns in the plasma and at the prcbe surface. The
collected current is then obtained from the current density at the col-
lector surface which can be calculated from the electron and ion velccity
distributions at the probe radius.

The self-consistent approach to the problem is very complicated,
besides being usually obtained for a relatively narrow range of boundary
conditions. Consequently, for a physically meaningful, tractable, and
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reasonable widely useful solution, certain simplifying assumptions be-
come necessary.

This paper will present certain such assumptions, and compare some
of the results with those obtained by Laframboise2 who used a numerical
approach. But before going into the details of our assumptions, we will
give a review of the relationship of our work to the most important ex-
isting literature on electrostatic probe.theory.

For the past several decades, a considerable amount of effort has
been devoted to plasma research by means of electrostatic probes. The
most important contributions are those by Mott-Smith and Langmuir,1
Langmuir and Compton,5 Bernstein and Rabinowitz,LL and Gurevitch.5 The
first unified treatment of electrostatic probe theory as a whole, was
that by Hok,6 in a report which has been a valuable resource in much of
the work on rocket investigation of the ionosphere by The University of
Michigan. Hok discusses the concept of a "potential well' or transition
region, important to bipolar electrostatic probes.

The classic works of Mott-Smith and Langmuirl and of Langmuir and
Compton, have been extensively used in laboratory plasma and ilonosphere
research, and for this reason part of this paper is devoted to giving a
criticial review of certain aspects of their theory, particularly in
regard tc details of their assumed sheath model and its physical signifi-
cance. Our early discussion of the "Sheath and Sheath Edge" introduces
an examination of the classical theory as to the self-consistency of

the sheath model from the standpoint of potential theory. This 1s then




extended into a discussion of the continuity of the potential across
the plasma-sheath boundary, and then to a study of some general proper-
ties of potential functions for the infinite sheath model.

The "Orbital Analysis" portion of this study employs throughout the con-
cept of the "effective potential." This is defined so that, by incorporating
the effect of angular momentum, it becomes a function which produces a fic-
titious force field governing the radial motion of the charged particles.

By systematically examining the mathematical properties of the effective po-
tential, the treatment then derives the Langmuir criteria for collection of
particles by the probe and in particular demonstrates that the discontinuity
of the electric field at the sheath edge is a necessary condition for Lang-
muir's theory to hold. Finally the infinite sheath limit in Langmuir's the-
ory is discussed.

A two-variable, separasble, mathematical form for the maxima of the
effective potential is then introduced which relates in conceptually use-
ful ways to the "admissible space" (Langmuir's term). The admissible
space 1s defined by the limits of integration employed in cobtaining the
probe volt-ampere characteristic. This separable expression is then used
to investigate the volt-ampere characteristics for a general inverse-
power-law potential function.

The underlying conceptual basis of the orbital analysis is similar
to that used by Bernstein and Rabinowitz,l'L and Gurevitch,5 in that it

neglects collisions in the sheath, and provides a framework for determi-




ning current collection by treating the whole region from the collector
surface to the undisturbed plasma by means of probability distribution
functions.
Following the orbital analysis, the probe volt-ampere relations
are derived in analytic form, for cylindrical and spherical probe geo-
metries. Among the assumptions that the whole procedure employs in
arriving at the volt ampere relationships, the following two are es-
pecially basic:
(a) The probability distribution of the particles is Maxwellian
in the undisturbed plasma.
(b) It is reasonable to approximate a part or the whole of the
potential distribution by a suitable inverse power law potential.
To check the feasibility and utility of our second assumption, we will
compare our volt-ampere characteristics with those obtained by Laframboise.
The treatment of Bernstein and Rabinowitzu is restricted to monoenergetic

5

distributions and to probes of large radius. Gurevitch” and Laframboise2
have extended the theory to Maxwell-Boltzmann distributions and to probes
of arbitrary radius: but only Laframboise had carried out the calculations
of the volt-ampere characteristics by solving the whole problem, including
the effects due to space charge, in a numerically self-consistent way.
His results are, therefore, s logical source for the comparison.

To summarize the purposes of this study, we shall attempt to:

(a) Give a critical review of the classical probe theory of Mott-

Smith and Langmuir, eXamining their sheath model in detail,




especially in regard to discontinuities of the field at the
plasma-sheath boundary.

(b) Review the properties of approximations to the potential
function. Then, by means of a suitable inverse-power-law
potential function, derive the probe volt-ampere relations
in analytic form, and compare the results with those obtained
numerically by Laframboise.

The first phase of the analysis will deal with a few classical defi-
nitions in electrostatic probe theory and their employment in dealing
with certain rather general aspects of sheath potential distributions

and of the merging of the sheath into the undisturbed plasma.



II. THE POTENTIAL INSIDE THE SHEATH AND ITS CONTINUITY
AT THE PLASMA-SHEATH BOUNDARY

2.1 THE SHEATH RADIUS AND "SHEATH EDGES"

Mott-Smith and Langmuir define the sheath and the sheath edge
in the following way.

Let rC be the radius of the probe (cylindrical or spherical) and
r. that of the sheath. Further let ®(r)/q be the electric potential

5]

of a particle of charge q at a radius r in the field of an accelerating

probe, ®(rc)/q = @c/q the electric potential at the probe and let ®(rs)/q =

@s/q = O be the plasma potential. We now quote Mott-Smith and Langmuir,l

who define the sheath edge in the following way:

"If we assume any distribution of potential between rg and r,

we can always find a cylinder (or sphere) of radius r' intermediate
betweenrg, and r. such that, for this cylinder (sphere) or any other

of smaller radius, the condition

2
I" 2 I‘2 I‘C
1 2 2 2 (1)
r

r -
C

lo| >

is satisfied. 1In other words, such a surface can be taken to be
the edge of the sheath if the distribution for the velocities of
the ions crossing it is known. As far as the equations of orbital
motion determine it, the sheath edge is therefore, simply a surface
on which we know the velocities of the ions and within which the

above condition is satisfied.”
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Note that this does not compel the potential gradient to be zero at,

or Just beyond, a "sheath edge" where the velocities are known.
Figure 1 illustrates the physical meaning of Eq. (l), and the

relationship of a particular "sheath edge" r' = r, to the sheath radius

Ty To aid in constructing Fig. 1, Eq. (1) has been rearranged into

the following form:

2
r
62 -1
lol > | =5 lo| = z.lo.l. (2)
e -1
| 1.2

When the sheath edge becomes the sheath radius, T, = T, the equation

changes to

lol > |—=—3 el = 1lo.] . (3)

The definitions of the functions fy and f, are contained in these
equations.

Note in particular that the slope of the factor fy goes to
zero only as r+> «, and that, therefore, the slope of the curve is
nonzero at r=r . Thus, as illustrated in Fig. 1, ®(r) must also have
a8 nonzero slope as it approaches r=r, if it is to remain below fséc,

as Eq. (3) requires (for ¢, < O, i.e., attractive potentials).
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To obtain Eg. (2) which applies when r, < rg it is necessary to

observe only that:

fe <fg, for r < r,, if r, < rg, because r, < r. (L)

e s? C

This is illustrated in Fig. 1 where the fe®c curve lies everywhere
above the f_ &, curve. Here fo and f are the bracketed factors multi-
plying |¢c| in Egs. (2) and (3), respectively.

One can note, immediately, the following serious weakness in the
reasoning underlying Eqs. (2) and (3):

In the case where r_ =r Eq. (5), and therefore Eq. (l) with

e g’
r' = Tgs describes a model in which there must be a discontinuity
in the potential gradient at r = Ty in order to have ¢ = O beyond
Tq- Such a discontinuity is physically nonrealizable, as dis-
cussed later in detail. This weakness does not appear when r' is
given a value re that is significantly less than rs,'because at

such an r the potential is still rising, and the gradient is not

e
compelled by the boundaries of the model to have any particular
value at and beyond the selected ry-

Subsequent sections deal with various methods of probe model analysis

chosen to avoid this weskness.

The above quotation from Mott-Smith and Langmuir,l as illustrated
by Fig. 1 and discussions thereof, leads one to conclude that, in

general, what Mott-Smith and Langmuir call "sheath edge' need not

coincide with the sheath radius r at which the potential becomes



equal to that of the undisturbed plasma. Furthermore, one concludes
that Mott-Smith and Langmuir considered that it is only inside any "sheath
edge" that the behavior is dominated by the dynamics, thus making the velo-
city distribution different from Maxwellian. Outside the sheath edge,
presumably, the analysis would be that applying to a plasma region in
which there is a gentle potential gradient and a moderate-to-small flux
density of particles. It 1s therefore reasonable, for analytical purposes,
to place a sheath edge as close to the probe as one may reasonably expect
the velocity distribution to be Maxwellian, with relatively little refer-
ence to where this may lie with respect to the potential distribution.

The right-hand side of the inequality (1), and its equivalent (2),
changes sign when r' < r < L and the inequality is reversed when
lo(r)| < lfe®cl for r < ry (see Fig. 1). However, these two aspects
are of little concern, since in the region beyond the sheath edge (i.e.,
r > r') one presumably expects to carry out the analysis not in terms
of particle trajectories in a sheath, but rather in terms of particle behav-
ior in a plasma with a gentle inward gradient insufficient to csuse signifi-
cant departure of the velocity distribution from that in the undisturbed
plasma (although it may affect the particle density significantly).

Still more generally, in view of the Mott-Smith and Langmuir
distinction between sheath edge and sheath radius, one may well ask
these two questions as to placement of an r' < rg:

(a) Can in any realistic model such a sheath edge surface r exist

and be usefully placed, within which the Mott-Smith and Langmuir

10




condition (1) [also Eq. (2)] is satisfied for all values of
r <r'? It has already been pointed out earlier that potential
distributions can exist that do not satisfy Egs. (1) and (2) for
all values of r', particularly if r' is close to or at rg.

(b) If such a surface does exist, what would be the velocity distri-
bution at r=r'? Presumably, with r=r' properly chosen, this
would be a Maxwellian distribution having parameters governed
by the plasma in which the probe is immersed but this merely changes

the question of properly locating a sheath edge r' within the

sheath model.
In the strict sense, answers to these two questions cannot be given prior
to solving the whole problem of the potential distribution in-the self-
consistent way. Supposing that the self-consistent method gave rise to a
potential function which did not satisfy the inequality (1) for the entire
range re < r < rg, one would then expect the corresponding volt-ampere
characteristics not to coincide with those of Mott-Smith and Langmuir.

It is worth while to note that the Mott-Smith and Langmuir "sheath
edge' may well be interpreted as the boundary between the two regions
which Hok6 calls, respectively, the sheath and the potential well. The
latter is a transition region exhibiting some slow radial flux of parti-
cles and a gentle potential gradient toward the bipolar probe electrode
system. He envisions this region as having properties similar to those
in laboratory plasmas exhibiting what Tonks7 and others8’9 have called
ambipolar diffusion. In such plasma regions the ion and electron densi-
ties are very nearly equal, and both are, among themeselves, in thermal

equilibrium, but at different temperatures. Thus, at Hok's boundary be-

11



tween his sheath and the potential w2ll, he is able to postulate Maxwellian
velocity distributions of the particles. Yet he need not postulate the
potential to be that of the plasma, nor that there be a zero potential
gradient, nor a discontinuity of the gradient at this boundary. These are
just the attributes of a Mott-Smith and Langmuir sheath edge, distinct

from their sheath radius, and well within the sheath radius.

All contributors, including Mott-Smith and Langmuir, Langmuir and
Compton,5 and Hok,6 give essentially their whole attention to studying
what happens inside what is really a "sheath edge." Yet it is frequently
unclear just where this sheath edge is relative to the sheath radius, and
still more often the sheath edge is identified with the sheath radius,
with various illogical conseguences.

It should be clear that, in general, the defining of a sheath edge
is justified only if it serves to simplify the problem of determining the
volt-ampere relations. The remarkable simplicity of the classical Langmuir

probe theoryl’5

lies precisely in the fact that, by setting r' = Ty one
is able to bypass the problem of solving for the potential function. Thus,

by Langmuir's sheath model, we mean the sheath region described by a

potential function ¢ such that

( r2 2 rz
s e
J[@I > o] 2 2 - £ le |, for r < r_
s "¢
o] =
0 , for r > r_ (5)

This is consistent with the inequality (2), if the inequality (4) is
satisfied.

12




In general, Langmuir's sheath model will be shown not to be
adequate for most plasma probe experiments. Particularly in iono-
spheric measurements, a potential function describing a finite sheath
region and satisfying Eq. (5) cannot exist, unless one assumes the
presence of a charge shell at r = rg. Thus, the curve of ®(r) in Fig.
1 exhibits a discontinuity in its derivative at r = rg, which could
only exist if there were a shell of surface charge to terminate the
flux due to the potential gradient Jjust within Ty No such shell can
realistically be assumed.

2.2 GENERAL PROBLEM OF THE POTENTTIAL DISTRIBUTION IN A FINITE SHEATH,

AND ELECTRIC FIELD CONTINUITY AT THE PLASMA-SHEATH BOUNDARY

Let us define the electric potential function for a finite

sheath by:

NMr) =

el

o(r) e(r-r,) &(rg-r) (6)

where g is the electric charge per particle, taken to be positive in
this discussion. &(r) is, as heretofore, the potential energy and

®(x) is the unit step function:

&(x) “lo irx<o0 o
with
di)ix) - 5(X),.g_x®(-x) = -8(x) (8)

where 8(x) is Dirac's delta function. In the above we have considered

15




only the radial variable, because of the symmetry of the field for both

cylindrical and spherical probes. ®(r) is considered to be a function

oA = - %T (9)

one obtains

2 1} B
-%; = VA awzg ¢ 8(r-r.)0(rg-r) + &' 8(r-r,)8(rg-r)

-@'S(rs-r)®(r—r;ﬂ (10)

where p is interpreted to include both space-charge density and sur-
face charge density, p becoming infinite for the latter. The prime
on ® represents the derivative with respect to r.

Now the surface charge density Ur on any arbitrary surface or
set of surfaces S enclosing a region outside of which the electric

potential gradient is zero is given by

a = -e_9. v X 11
T 0o levaluated on S. (1)

Here X is the electric potential function in the region enclosed by S,
and n is the unit normal vector pointing into the region where the
electric field exists. yx is, of course, to be identified with @'/q
in Eq. (10). At r = Yoo the unit vector points radially outward, so
that f! = +1, whereas at r = rs it points radially inward, so that

ff = -1. Thus Eq. (11) becomes

1k




o' (r ) a
C = . X atr - r, (12)
q €o
o' (r.) o
s T
4 = '€; at r = r_ (13)

Hence, the expressions for the surface charge densities O and Org

at r = r. and r = rg respectively, are,

e 0!
o, = -°°¢ (1k-1)
re q
e _d!
o°c
O.g = (14-2)
q
where & = @'(r)lr = ro and ®é = @'(r)lr = g These algebraic signs

are consistent with Fig. 1 as long as q is positive, for in that case the
®(r) curve in Fig. 1 can equally well represent potential energy per
particle and electric potential. If it represents electric potential, the
surface charge at r, is clearly negative, and at ry positive, from the
construction of the figure.

Now let py denote the volume charge density. Then we may write

) ap
o = - T (15)
o]

It is now instructive to obtain an overall expression for the charge
density by inserting Egs. (14-1), (14-2), and (15) into Eq. (10) to

obtain
P o= p, @(r—rc) @(rs-r)-crc6(r-rc) @(rs—r)-GrSS(rs—r)®(r-rc) (16)

This is consistent with Eqgs. (12) and (13). The delta functions identify

the fact that the charge density becomes infinite for a surface charge.
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Of course in an integration to obtain total volume charge and total
surface charges, the delta-function terms maske finite contributions.

From Eq. (14-1) it is seen that 0,4 = O only if &g = O; i.e., at the
sheath outer bound, the electric field must vanish in addition to the
vanishing of the potential provided by Eq. (6). If only ® vanishes at
ry but not &g, then there would exist a surface charge layer of strength
given by Eq. (14-2). 1In the interior of a plasma, remote from physical
boundaries, the existence of such a shell is obviously unphysical, be-
cause it implies a discontinuity in the electric field. We have already
seen in the previous section that a nonvanishing @' at Te) approaching
from the left in Fig. 1, is required by the Mott-Smith and Langmuir
model in which r' = rg in Eq. (1). Therefore, as discussed in more
detail later, this nonvanishing of ¢' at ry is a necessary requirement
in deriving their volt-ampere relations for a finite sheath in which
their "sheath edge’ coincides with the sheath outer bound.

In other words, those current expressions will be strictly valid
only under the unrealizable condition in which this sheath edge, placed
at sheath radius, is replaced by a zero-potential conductor of the same
type of geometry as the probe. Presumably Mott-Smith and Langmuirl
were aware of this, but felt their model, even though containing this
element of unrealizability, was an adequate first approximation, and so

it has been for very many years.
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2.3 NEED FOR, AND CONSEQUENCES OF, ABANDONMENT CF THE CONCEPT OF A
WELL-DEFINED SHEATH BOUNDARY BY MAKING THE SHEATH RADIUS FORMALLY
INFINITE

The finite sheath model has weaknesses that go considerably be-
yond that of the potential gradient discontinuity at the sheath outer
bound, discussed in the previous section. That particular weakness could
be formally overcome by employing for ®(r) some simple function that mo-
notonically rises from the probe to sheath radius, but whose slope be-
comes monotonically less steep, finally reaching zero at sheath radius.

Or, one could employ one kind of potential function within a sheath edge,
and anqther between sheath edge and sheath radius, with potential gradients
forced to be equal at the sheath edge, and that at sheath radius forced

to be zero. But in all such highly artificial potential models, the second
and perhaps higher derivatives would have discontinuities at these bounda-
ries. The second derivative is intimately related to space-charge density,
and it is almost as unrealistic to presume an abrupt discontinuity in
space-charge density at a sheath edge or sheath radius as it is to presume
a discontinuity in the potential gradient.

In any realistic model, not only the potential but also all of its
radial derivatives must be presumed to be continuocus through the sheath
into the plasma. This type of continuity demands that the sheath poten-
tial approach the plasma potential asymptotically with increasing radius;
thus, in reality, there can be no well defined sheath radius.

There can of course be described a general range of values of the

radius within which the sheath region with its steep gradients merges
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into the plasma with its zero gradient. Any plasma will have random
potential variations, and the sheath may be considered to have merged into
the plasma within any range of values of the radius for which the dif-
ference between the sheath potential and that of the undisturbed plasma

is of the order of the random variations in plasma potential. In terms

of experimental systems, this may occur at relatively small distances

from the probe surface.

Mathematically, the merging of the sheath into the plasma is pro-
vided for by letting the sheath radius become infinite (rgm) and requiring
that both the potential and the potential gradient be zero at an infinite
radius. That is, ®(r)=0, and ¢'(r) = O at r = rg = =,

Of course this makes the sheath include the two regions discussed
earlier in Section 2.1, namely the steep gradient sheath region proper,
and the gentle gradient plasma-like transition region. It also makes the
sheath include what Hok6 has called the potential well that exists around
a bipolar probe, which represents a reasonably good conceptual approach
to reality.

Thus when we later, for purposes of analysis, extend the sheath
radius to infinity, we must recognize that we are including in the sheath
two types of regions having wholly different properties. In the region
close to the probe, the potential gradient is steep and particles of one
or the other polarity dominate so that space charge has a major effect on
the potential distribution. In the outer or transition region, the positive

ion and electron densities are nearly, but not quite, equal. Particles
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of each polarity are in thermal equilibrium, but maybe at different
temperatures. There may exist a close parallel to Tonks' ambipolar

7,8,9

diffusion region. The potential gradient and flux of particles to
the probe are not zero. The flow of heavy particles (ions) to the probe
may be governed by mobilities affected by collisions, or they might pursue
orbits with negligibly few collisions. Any self-consistent analysis of
the sheath should, to be complete, be equipped to treat both regions, as
for example by using what has been called the "combined plasma-sheath
equation."
2.4 POTENTIAL FUNCTION MODELS AND CHARGE DENSITIES FOR THE INFINITE
SHEATH
It is clear from earlier discussions, that the general problem of
actually determining the true potential function for a physically realistic
model is very complicated, for in Poisson's Eq. (15) the density function
pv will, in general, involve ® implicitly. Instead of solving this self-
consistent problem we shall examine the properties of various potential
models and their corresponding volt-ampere characteristics. Each potential
model of course implies a certain charge distribution in the sheath. Our
investigation will be restricted to potential models having the common
property that ¢ and &' approach zero as r-w, An illustrative choice of

a class of potential models, to be discussed below, 1s the function

o = @c\\?i) , (17)
where &, is the potential energy per particle at the probe or collector,
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and @& is a positive number. For an accelerating potential, (-0 ) is

=

c
numerically positive. The potential energy gradient is
Oéra
C
o = (-0,) 55 (16)
r

Clearly, both the potential and its gradient vanish as r-w.
The exponent & has a very simple physical interpretation. Using

Eq. (14-1) in Eq. (18) when r = r, we get

Te ('GrCQ)
CZ='€—

) (19)

c c

in which, for an accelerating potential, both (-crcq) and (-@C) are
positive quantities. That is, & is proportional to the ratio of the
collector surface charge density to the collector potential.

In any realistic model, to which Eq. (17) can of course only be

an approximation, one can consider 0y, to be the sum of the charge density

on the probe that would exist if it were at the potential ®. in a space-
charge-free environment, and the induced charge on it due to the space
charge in the sheath region. Before criticizing this concept, let us
state the charge density distribution called for by Eq. (17). By using

it in Eg. (10), the result is

€ -0.) ala-8)r%

p = +  0,..8(r-r (20)
. 02 re e/ »

where § = O for the infinite cylinder and & = 1 for the sphere and Tpe

is given by Eq. (14-1). Equation (20) applies only if @ > 1, as will

be explained below. In that case no third term appears on the right-
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hand side because, as r-w, the surface charge
boundary goes to zero faster than the surface
increases.

For the spherical geometry, we use £ =1
that if & = 1 in spherical geometry, Eq. (17)
free "sheath" potential (there will generally
in the sheath of a useful electrostatic probe
potential differs appreciably from the plasma
where @& = 1 in spherical geometry, there is a
probe surface, found by using Eq. (18) with «

there is no volume space charge, the electric

density at the sheath

area of the sheath boundary

in Eq. (20). This means
describes a space-charge-
be substantial space charge
in a plasma if the probe
potential ). For the case
well-defined 0., on the

= 1 in Eq. (14-1). Since

flux that originates at Tre

must terminate at infinite radius. Thus, in this case there would be a

well-defined charge hﬁrgo on the probe, and

re

at infinite radius where ¢ = O, with ¢ = @,

finite charge is distributed over a spherical

the charge density 0., goes to zero in such a

an equal and opposite charge

on the probe. But since this

shell of infinite radius,

way that the total charge

remains constant, as r-o. This also corresponds to the result of Eq. (18)

that with & =1, 1im®' = 0. Of course in the integration over all volume

0

elements from r = r. to r=

C

s Eq. (20) must in principle integrate to

zero; for & = 1 in spherical geometry, this can be accomplished only by

adding another term lim 0.¢8(rg - r) whose contribution to the charge

Ts

integral is equal in magnitude, and opposite in sign, to the total charge

on the spherical probe.

If, for spherical geometry (&=1), we use @ > 1 in Egs. (18) and
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(19) the situation is straightforward, in that the volume integral of
charge is found to equal the area integral of 0,.; 1in this case Eq. (20)
includes all electric charges. All electric flux lines then originate
at the probe surface and terminate in the volume charge in the sheath.
The result of the integration is:

7
/

Total Volume Qfﬂe\\

o) ar.(-%,.) Coulombs (21)

Charge

’

and 0y, has an equal but negative value.

But if 0 <@ < 1 for spherical geometry (€ = 1), Eq. (20) predicts a
volume charge of the same sign as the surface charge on the probe. BSuch a
model obviously is physically unrealistic and will, therefore, not be
discussed in this treatment.

Thus, in summary, for spherical geometry, only the range @ > 1 in
Eq. (17) has any real interest. But the above comments do suggest the
possible utility of a model in which & is the sum of two terms like Eq,
(17), in one of which @ > 1 and in the other & = 1., In fact such a model
probably closely describes the real potential which can be constructed as
the sum of: (a) a contribution due to the space charge and its induced
charge on the probe, and (b) that for a space-charge-free structure. This
two-term potential model will not be dealt with in the present paper.

For the infinite-cylinder geometry we use &€ = O in Eq. (20). This
means that no expression of the form of Eq. (17) can describe the space-
charge-free potential structure which is, of course, logarithmic in form.

Furthermore, that logarithmic form is uninteresting because it becomes infi-
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nite as row (with, however, a zero-value @' at r = ). With the
logarithmic potential used in Poisson's equation, the space-charge
density term in the new Eq. (20) vanishes and, to make the charge
integral balance, we would have to add a term %3& Grs S(rs-r) which
would make a finite contribution to the charge integral.

Of course, any cylindrical electrostatic probe used in the
ionosphere is not an infinite cylinder. Even if completely isolated
from any other conductor, the field of a charged cylinder of finite
length would, at a sufficiently large radius, become essentially the
same as that for a charged sphere. So there is always, in fact, a
finite space-charge-free potential for such a body carrying a finite
charge. But our infinite-cylinder analysis is not adequate for study-
ing that aspect of the problem.

If, for the infinite cylinder geometry (& = 0), we use @ > 0 1in
Egs. (18) and (19) the volume integral of the charge equals the area
integral of o,.., and Eq. (20) identifies all the charges. The result

of the integration of Eq. (20) is:

Total volume charge, per _{/L“€o o (-0.) (22)
unit length of cylinder _\\\q o e/l

and 0p~ has an equal, but negative, value.

In summary, we can say that by postulating a relatively simple
potential function (e.g., Eq. (17)), we have obviously no a priori
assurance that the charge density implied by such a potential is phy-

sically realistic. However, it will be shown later that in the range
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r./Ap< 5 the volt-ampere relations obtained from the potential (17)

for certain values of @ agree very well with those obtained by the self-

consistent calculations of Laframboise.2 Here %D is the Debye length.
We shall now proceed to the orbit analysis, which includes a

detailed discussion of the behavior of the particles in the sheath

region and the selection of those trajectories, which intersect the

probe.
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IIT. ORBIT ANALYSIS

5.1 THE "EFFECTIVE POTENTIAL' FOR ACCELERATED TRAJECTORIES
The solution of the equations of motion of a particle approaching

a cylindrical or spherical electrostatic probe (Fig. 2), leads to two

e

Fig. 2. Radial and tangential velocity components u,, and Uy for
an approaching charged pesrticle at a distance r from the center
of a cylindrical or spherical electrostatic probe.

constants of motion; viz., E, the total energy, and M, the angular momen-

tum. These are given by:
E -im (@ -+ u2) + 0 (23)
2 t ’
M = mru, , (Qh)

where m is the mass of the particle and u, and u, are the components
of the particle velocity in the radial and tangential directions,

respectively, at some point in space located a distance r from the
center; ¢ is the potential energy. In the cylindrical geometry, u,.

and u, are in a plane perpendicular to the axis of the cylinder (taken
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along the z axis of a right-handed coordinate system) so that E is the
total energy due to motion in that plane and M is the component of

angular momentum in the z direction. Since the cylinder is considered
to be infinite in length, the velocity component u, in the z direction
remains constant and does not play a role in the classification of the

orbits. In the spherical geometry, u, is the radial component and uy

T
is the total tangential component of the particle velocity. Thus, in

this case, E is the total energy and M is the total angular momentum.

For both geometries, ® is the potential energy at r, relative to a zero
value in the plasma. Since we will be dealing exclusively with the situ-
ation in which the particles are accelerated toward the collector, we will
have ® < 0 and ®' > O, where the prime on ® denotes differentiation with
respect to r. The classification of the orbits will now be carried out
without reference to whether the geometry is cylindrical or spherical.

Now let us introduce the concept of the so-called "effective po-

tential energy' by substituting u, from Eg. (24) into Eq. (23) to get
1
E = S + @ (25)

where

o

o
i

2 + 0. (26)
€ 2mr2

The effective potential energy @e governs the radial motion of the

particles. The points, where u,. = O are the turning points of the orbits.

At these points the effective potential energy @e equals the total energy E.
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In principle, the mathematics describes two such points, the apogees
and the perigees of quasi-elliptical orbits. However, the present physical
model deals only with the perigees, as the apogees would be beyond the
sheath region, or more generally beyond the region of interest for the
present study.
3.2 RELATIONSHIP OF THE OCCURRENCE OF MAXIMA AND MINIMA OF THE EFFECTIVE
POTENTIAL ¢, TO THE PCIENTIAL STRUCTURE
In order to investigate the qualitative behavior of particle tra-
Jectories, we need to examine the behavior of the effective potential @e
as a function of r for various values of the angluar momentum M. In
particular we must study the extrema of O On equating to zero the
derivative of &, with respect to r, keeping M2 constant, in Eq. (26),

we obtain

W - mr5®', when ¢'¢ = O, (27-1)
that is,
¥(r) = M°, when @'y = O, (27-2)
where, for convenience, we use a function V¥ (r) defined as follows:
V(r) = nrod . (28)

¥(r) is a function of the field structure, that has the unique value M?
at values of the radius for which the effective potential ®e has a maxi-

mum or minimum. Of course, the solution of Eq. (27-2) for r is dependent
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on the form of V¥(r). If V(r) is a monotonically increasing function
of r, as illustrated in Fig. 3, then for every given value of M there
exists one and only one value of r for which Eq. (27-2) is satisfied:
therefore, there exists only one value of r at which @ has an extreme
value, and this extreme value can only be a minimum.

A sufficient condition for ¥(r) to increase monotonically would
be for ®(r) to obey an inverse power law varying less steeply than l/r2,
for all values of r within the region of interest. Therefore ¥(r) would
increase monotonically, as shown in Fig. 3, if o(r) were to vary as Cl/r°

In contrast, if &(r) were to vary as Cl/rB, then V¥(r) would be
a monotonically decreasing function of r. In such a case there would be
one and only one value of r at which @e(r) would have an extreme value;
but thié would be a maximum, resulting in a potential barrier inside the
sheath.

The steepness of the potential gradient ®(r) is partly determined
by the geometry of the probe (i.e., whether it is spherical or cylindri-
cal). In addition the radial dependence of ®(r) is governed by the extent
to which space charge is present in the region of interest. The potential
o(r) is, in general, describable as the sum of a space-charge free term
of positive gradient (for example varying as 1/r or as ln r) and a space-
charge dependent term. This relates to the discussion below Eq. (20), for
the condition £ = 1 and o > 1 (for spherical geometry), and & = O and
o > 0 (for cylindrical). The usual physical model for accelerated parti-

cles is that of a negative potential probe drawing a current of positive
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Fig. 3. Graph of the function ¥(r), Eq. (28), for a form of this
function that increases monotonically up to the sheath radius rg
and has the value yg at rg. An illustrative value of M2 is shown
corresponding to a trajectory for which the angular momentum is *M
(determined at entry into the sheath).
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ions through the sheath. For this model, the space-charge density is

positive throughout the sheath. For a potential model that incorporates

a space-charge free potential plus a potential due to space-charge content

the space-charge free potential term by itself gives rise to a monoto-

nically increasing V¥(r), for either the spherical or the cylindrical

geometry. Thus, departure from such a monotonicity comes only when the

rate of change of the space charge term in ¥(r) is dominant in a region

where this rate of change is negative. As discussed later in connection

with Fig. 15, wherever the space-charge density locally declines as l/rn

with n<k, it contributes to the monotonic increase of the function ¥(r).
n>%)

But i;«W(r) will increase monotonically only because of the dominance of

the space-charge free term over that due to space charge, in the range

of radii of interest.

Thus it appears that a sufficient, but not always necessary, con-
dition for V(r) to increase monotonically is an adequate domination of
the space-charge free effect on the potential distribution over the space-
charge effects.

%.% PROPERTIES OF THE EFFECTIVE POTENTTIAL OF LANGMUIR'S FINITE SHEATH
MODEL; THE " ADMISSIBLE SPACE' DIAGRAM FOR PARTICLES REACHING THE
PROBE
We will first examine ®e in the light of Langmuir's finite sheath

model, that is

[@(r) when r < r_;

o(r) = ] (29)

0] when r > ry;
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with ¢ satisfying the inequality (3) for r, < r < r_, where r, and r, are

C S

the radius of the probe and the radius of the sheath, respectively. An il-
lustrative plot of ¥(r) is shown in Fig. 3. We will show that Langmuir's
expression for the accelerated current to the probe, for either cylindrical
or spherical geometry, can be derived only when it is assumed that
Lifié(r> 0 (30)

that is, if it is assumed that the potential gradient does not vanish
as r approaches rg from within the sheath.

Let Vg denote the value of ¥ (r) as r>rg. Then, for M2>¢s, there
exist no solutions of Eqs. (27-1) and (27-2) in the range r < ry. In
the range 0 < M?S Ws, one value of r is obtained for each given M from

Eq. (27-2), and at this value of r, ®c has a minimum. At r = rg, the

value of &, is, from Eq. (26) given by

M2
0 (ry) = > (31)
2mrg
because ¢ is defined to be zero at and beyond r = ry. This expression

tells us that, for nonzero M?, @e(rs) is always positive. The derivative

of @e at T is

oy(r)) = s (v ) (32)

mrg
where ws = W(rs). It will be recalled from Eq. (28) that the meaning
of this is:
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q)'e(rs) — 1 mrSB(D'(rS) - Mz>. (55)

Il'l]:‘s5

From Eq. (32) it is clear that from ®é(rs) > 0 follows
M < g, (34)

whereas for other values of M?, oL(rg) < 0. Plots of @.(r) are shown
. . . M? 2
in Fig. 4. ©Now, there exists a value of = Mg~ such that ®e(rc) =
@e(rs). For any potential which satisfies the boundary condition &(r,) =
0, Eq. (26) can be used to show that

2mr52rc2

M52 = = ('q)c)' (55"1)

2
re< - rc2

Note that for a very large sheath, when rs2>> rcg, this reduces to:

M = 2mr © (-0,). (35-2)

In reference to Fig. 4, it is seen from Eq. (26) that the ¥ =0

curve describes equally well:
(a) The potential distribution in the sheath:
(b) The energy of a particle that is wholly radially directed and

has zero velocity at r = rs;

such a particle falls freely from
rest at r = Ty into the probe; it must begin this fall, because

in the Langmuir model now being described, &'(r) is positive at

In accordance with the discussion following Eqs. (27) and (28) we now

consider a potential that is qualitatively like the M° = O curve in Fig.
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Fig. 4. Plots of the effective potential energy Qe(r), for various
values of M®. Mj is defined as the value of M2 for which ¢g is the
same at the probe surface as at the sheath radius. g is the value
of M2 for which the minimum in ®e occurs at sheath radius (see Fig.
3). '
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4 and has a monotonically increasing ¥ function as shown in Fig. 3. Then
each effective potential @e(r) has one and only one minimum in the range
r < r, as shown in Fig. 4. If M? is nonzero but very small, the minimum
occurs forr < r,, and so has no physical significance for the present
study. As M2 increases, the minimum moves across r = r,. We are inter-

ested in two particular values of M?.

One of these is of course Me = Mg, for which a particle with zero
initial radial velocity grazes the probe at perigee. If M§ < ws < M2,
a particle with zero initial velocity will not start inward. because

Qé < 0. An illustrative example for such a & curve is shown in Fig. L.

The second unique value of M? occurs at M2 = WS, for which, from
Eq. (52), the minimum of ®e occurs just at r = rg. A particle with this
value of M? and zero initial radial velocity will not move.inward from
r = r, even though @'(rs) is positive, because the gradient Qé(rs) of the
effective potential is zero at T and negative for r<rs

From the above comments i1t is clear that Msgi Ws, as long as the
potential is such that V¥(r) increases monotonically as illustrated in
Fig. 3.

The relationship of particle trajectories to effective potentials
of the type shown in Fig. L4 will be discussed with reference to Figs. 5a
and 5b. Figure 5a shows, a typical effective potential ®e(r) for a case

in which W < M52 and the total energy E is sufficiently large so that

the trajectory will intersect the probe, i.e., a particle along such a
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trajectory will be collected. If M? < Msg, the requirement for col-
lection (see Fig. 5a) is that E > @e(rs) since then also E > @e(rc) be-
cause of the way in which MS2 is defined.

Figure 5b shows, a typical ®e(r) for the case in which M? > Mse,
with the total energy E larger than ®e(rc). Thus the trajectory for
this E and this M will also intersect the probe, and collection will
occur. Note that in this case particles with energy less than o (r.)
could exist inside the sheath. But in such a case the perigee (E = @e)
would be at a larger radius than r. implying that collection would not
occur.

In Fig. 5a (M < M%) the requirement that %murQ cannot be negative,
limits the possible values of E to the range E > o.(r,) and since o (rg) >
@e(rc) in Fig. 5a, any energy that exceeds @e(rs) will give rise to a
trajectory reaching the probe. In contrast to this, if M? > Még (Fig.
5b), the particle reaches the probe only if %mur2 >0at r = r. which
limits the possible values of E to the range E > ®e(rc)° Therefore, we
can now define a so-called "admissible space." ©Each particle can be
represented by a point in the (E, M?) space, since both E and M2 are
constants of the motion. Then the admissible space is that subspace of
(E, M?) space which contains the representative points of the collected
particles. Based on the above discussion the admissible space is de-
fined by the following relations:

M : 2 _ 2
E >04(ry) = —5 1if 0 <M™ <M (36-1)
20rg
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2mr .

E> d.(rg) = o, if M >MZ2 (36-2)

The shaded area in Fig. 6 illustrates this admissible space.

3.4 UTILITY OF THE V~FUNCTION IN DETERMINING APPLICABILITY OF THE
LANGMUIR VOLT-AMPERE RELATICNS

The V¥-function (28) plays a very important role in deriving criteria
for the validity of Langmuir's theory. We have seen that, if ¥(r) is a
monotonically increasing function of r, then for each given M2, ®e(r) has a
minimum. For a finite sheath each ®. has a minimum provided M? < Vg, where
Ve = W(r.).

We wish to show in a slightly different way from the treatment of
Mott-Smith and Langmuir that there indeed exists a limiting potential
function ®L (r), with the property that any other potential function that
varies less steeply than QL’ for all values of r, will give rise to Lang-
muir's current expressions, while any potential function varying more
steeply than @L will give rise to current expressions different from those
of Langmuir. First, we note that if ®e has & maximum (for a given M2<M52)
which lies to the left of rg (see Fig. L), the condition for collecting the
particle corresponding to that W will not be determined at rg, but at a
smaller distance than rg. This is contrary to Langmuir's requirement that
all trajectories intersecting the probe must be determined by initial con-
ditions at rg. Hence the class of potential functions which satisfy this
requirement must be such that they produce no maxima in I in the region
r,<r< ry- As discussed earlier, ®e has minima when V¥(r) has a positive

slope and maxima when it has a negative slope. The necessary condition
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Fig. 6. The shaded area is the "admissible space" in the
(E,M?) plane for Langmuir's finite sheath model. To the left
of Mg? , Eq. (36-1) applies, conditions as illustrated in Fig.
5a. To the right of Mg? , Eq. (36-2) applies, conditions as
in Fig. 5b.
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for the applicability of Langmuir's theory can, therefore, be restated
by saying that the Y¥-function cannot have a negative slope. Therefore,
v (r) can, at most, be a constant in this range of r, in order for Lang-
muir's volt-ampere equations to be valid. Thus, by setting ¥(r) = mCa,

introducing the potential given in Eq. (6), and employing Eq. (28), we

have
dQL
= 2] (r—rc) ® (rs—r) + 0, B (r—rc) ©) (rs-r)
Cq
-0 S(rs—r) ® (r-rc) = = (37)
g
Upon integrating this, we get
Ca
on(r) + 0 = G - 5 (38)
2r
On employing the boundary conditions
@L(r) = 9o, atr = r,,
@L(r) = 0 atr = L (39)
we obtain
Ca
Cy - = 29, (40-1)
5 c
2rc
Ca
C, - > = o, (4o-2)
ErS
and therefore
2(-®C) rqgrc2 ‘
Ca =- 2 2 s (ul_]-)
s - Te
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c, = 2 _ -2(-0,). (41-2)

QL(r) = 0 S ; ® (rg-r). (42)

Equation (42) defines the desired limiting potential function. It is
seen to be of the same form as the potential defined by Eq. (5) which
had been employed in an earlier section to identify Langmuir's sheath
model. @L is graphically represented by the fg:®c: curve in Fig. 1.
The corresponding V¥(r) is obtained by using the radial derivative of

Eq. (42) for ¢' in Eq. (28), which yields

2mrs

As shown in Fig. 7, this is a horizontal straight line for r < T where
it has a step function drop to zero.

The conclusion is that for a finite sheath radius and given boundary
value ' (rg) any monotonically increasing function ¥(r) (corresponding to
some potential function) which lies in the rectangle, illustrated in Fig.

T, will give rise to Langmuilr's volt-ampere relations. The dashed curves
in the figure represent two such possible ¥(r) functions.

For the infinite-sheath case (rg ow) the right-hand side of Eg. (42)
reduces to the inverse square law. Thus for an infinite sheath the limiting
potential function (corresponding to the limit of the range for the orbital-

motion-limited mode of collection)is simply
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Graph of the singular y-function (43) corresponding to
the Eq. (42) form of ¢y, which is the limiting form for validity
of the volt-ampere equations of the Langmuir finite sheath model.
¢7, is the fg-%¢ curve in Fig. 1, for r < rg, and of course 9], = O
for r > rg.
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3.5 DEPENDENCE OF THE MOIT-SMITH AND LANGMUIR CURRENT-COLLECTION

EQUATICNS ON THE PRESENCE CF A DISCONTINUITY IN THE POTENTIAL

GRADIENT AT THE SHEATH EDGE

When one employs the domain of integration given by Egs. (36-1) and
(36-2) as illustrated by Fig. 6, the resulting expressions for the acceler-
ated currents to the cylindrical and the spherical probes are the ones ob-
tained by Mott-Smith and Langmuirl (see the Appendix for the derivations).
It is important to note here that it was necessary to assume a discontinuity
in ¢' across ry (indicated at r = rg by the M? = 0 curve of Fig.4) in order
to obtain these current expressions. If we were now to assume that ¢ has
a continuous derivative at Ty and in fact thatlgig ' = O from the left
and from the right this would smount to requiring that, in the neighborhood
of g the variation of ¢ be as (r - rs)n, where n > 1. This contradicts
the gross-aspect requirement, used by Mott-Smith and Langmuir, that the
variation of & must approximate that of an inverse power less than 2.

More specifically, if one were to require that ¢' = O at r = L
this would in turn require that Wszmrs5(d®/dr)r=rs = 0. For a finite

rs, this is wholly inconsistent with the requirement illustrated by Fig.

T that W(r) be a monotonically increasing function of r for r <r<r

c s’

Therefore, as will be seen later, the current expressions obtained by
using ®' = Oat r = x are quite different from those of Mott-Smith and
Langmuir.

One may also note that in the finite sheath model, with Lim

r>rg

®'# 0, a slight error in the estimation of r, can contribute a sig-

Lo




nificant error in the current calculation. This is so because the slope

2

of Line (1) in Fig. 6 is inversely proportional to rs©.

3.6 ADMISSIBLE SPACE FOR THE ORBITAL-MOTION-LIMITED CONDITION IN

THE MCIT-SMITH AND LANGMUIR THEORY

The case, where the sheath radius 1s large as compared with the probe
radius, is of special interest in many applications. Following Langmuir,
this is referred to as the orbital motion limited case. As T increases,

Curve

the slope of the function E = Me/EmrS2 (see +me 1 in Fig. 6) becomes
small and in the limit of infinite sheath radius goes to zero. V(r)
becomes then a monotonically increasing function fromr = 0 to r = .
Consequently, for every given M2, Egs. (27) are satisfied for some value
of r. In other words, ®e(rs) = ®e(m) = 0, and @e(r) has a minimum for
every M?; this is illustrated in Fig. 8.

The corresponding admissible space is illustrated in Fig. 9, and

is generated by the following expressions obtained as modifications of

Egs. (36-1) and (36-2):

0<E< w, if 0 <M <M (45-1)
e

E > 5+ 0, if M2 < M2 < o, (45-2)
2mra

where ?;;»m in Eq. (55—171
t o

0. (45-3)

Note that the admissible space illustrated in Fig. 9 governs the Mott-

Smith and Langmuir orbital-motion-limited condition.
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\ Total Energy E
(r) \ L A ya
\
Vo \ .
\ o\ { m2mul,
\\ \\ 1/2mu2r _— —
0 \
NI M2>m¢2 ; Eq. (45-2)
Me =M 2

M2<mZ Eq (45-1)

Fig. 8. Plots of the effective potential if rg+e, giving the Mott-
Smith and Langmuir orbital-motion-limited condition. If M2 < Mg2,
any positive E will result in collection, as expressed by Eq.
(4s-1), if M2 > Mg?, E must equal or exceed ®g(re) for collection
to occur, as expressed by Eq. (45-2). See Fig. 9, for the cor-
responding admissible space.
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Fig. 9. "Admissible space" diagram, for the orbital-motion-limited
condition, occurring for the Mott-Smith and Langmuir model when
rg»>~. The two shaded regions correspond respectively to the Fig.
8, curves for M2 < Mg2, as in Eq. (L45-1), and for M2 > Mg2, as in
Eq. (45-2).
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3.7 A CLASS OF POTENTIAL FUNCTIONS, GIVING RISE TO BOTH A MAXIMUM AND
A MINIMUM IN THE EFFECTIVE POTENTIAL

Next, we shall examine the effective potential ® (r) for a class of
potential functions with the following properties: The associated V-function
increases montonically to a certain value of r denoted by r;, where it reaches
a maximum, and then decreases montonically, as shown in Fig. 10. At r = O,

V(r) = O. Consider for a time the condition r, < Ty and define Mi so that

<=

—
=

~r
!

= Mi2 at its meximum point r = r;. Thus with this form of ¥(r) we have
no solutions of Eq. (27-<2) for M > Mi2’ which means that for these larger

values of M? the function ©_(r) monotonically decreases with increasing r,

for all r < ». Also, the curve for @e(r,Mg) has an inflexion point at r

I
a1

For M2 < M?, Eq. (27-2) has two solutions corresponding to the values of r
where @e has a maximum and a minimum.

Let ®_*,r*, and 0% symbolize, respectively, the maximum value of @e(r),
the radius at which it occurs, and the potential at that radius, all for

some given M . Evidently r* > Ty Thus we may

*
o, = x5 * O (k6-1)

Of course r* is the solution of Eq. (27-2) which identifies the radius at
which this maximum occurs: r* is itself a function of Mg.

It is clear that in order to find the locus of the maxima of &, one
must first know the form of ¢. However, instead of restricting ourselves
to a particular form of &, we shall consider a class of potential functions

for which the loci of the maxima of @ (r) as a function of ME, are of the form

Lé




0% = K, Vakd r* > ry (h6-2)
Using the definition (26) of ¢, we therefore obtain

o * = + 9% = KMV (46-3)

®e* is said to be separable for a given potential ® if it can be written
in the form (46-2) such that v and K, are independent of M°. These
parameters depend only on the probe geometry and potential. In Egs. (46-2)
and (46-3) one must always take Y as (M?)V for all values of v, in order
to retain the symmetry @e* must have with respect to the angular momentum
M.

Note particularly that Eqs. (46-2) and (L46-3) describe only the be-
havior of ¢, at the maxima, and do not restrict the location of the minima.
3.8 THE UNIQUE ANGULAR MOMENTUM M FOR WHICH THE MAXIMUM VALUE OF

EFFECTIVE POT'ENTIAL EQUALS THAT AT THE COLLECTOR SURFACE

We shall now study the relation of the maximum value ®e* to the
value @e(rc) of the effective potential at the probe surface for a V-
function of the type illustrated in Fig. 10. Such a study leads to an
evaluation of K, and v for the particular class of potentials identified
by Eqs. (46-2) and (46-3), but also of general interest as regards any
potential function whose associated V-function varies as shown in Fig. 10.

For any particular potential function having two extrema in the
expression for @e(r), the probe radius r, may in principle be less than,
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Fig. 10. Graph of a y-function, displaying a maximum inside the
sheath. 1In this case the effective potential has: a minimum if
r < ri and M < Mj?; a maximum if r > ri and M® < M;j?; and inflec-
t%on po%nt if r = r; and M2 = Miz; neither maximum nor minimum if
M > Mj“.
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equal to, or larger than r;. This location of r. provides an important

basls for classification of the dynamic ' behavior. Of course, only the

region r > r. is of physical interest, wherever r may lie relative to r..

C 1

>

For any relationship of r, to Tis that is, for T, 2 Tis there can

exist a value of M2, denoted by M%, such that

Qe(rc)M%) = O (rk)Mﬁ)) (47)

i.e., when M - M%, 0, at the maximum equals that at the probe surface.

Use of Egs. (26) and (L46-1) gives:

M M
2 + 0 = & + @k . (L8)
2mrc2 ¢ 2mrk2

This is also expressible as

2D ®k - ®c

Mﬁ = 2mr, Ty - T # r, (L9)
e = Te
Using Egq. (27-1) Mi can also be expressed in the following way:
Mi = mrk%{{ (50)

where @k =o' (r A relation between rk,® and ®é can be cbtained

k>° k
by eliminating ng between Eqs. (50) and (48). Useful forms cf the

result are

~

—~
\J1
-

~

and

ko



r r% - ri

Tk _
% = \——=— )= % - % (52)

These equations apply to values of r. over the whole range r ; r

For a V-function of the type shown in Fig. 10 let

¢k = W(rk)r (55)

of course ¥, = M%- Thus, in Fig. 11, V¥, is some velue of V¥(r) that is

less than Miz.

For the moment let us consider the case where r, < r. It is clear
from the concepts underlying Fig. 10 and Eq. (47), (without requiring
that ©.% = KM2Y) that if r, < r; the function @e(r,Mi) will ex-
hibit the following properties in the range r. <r< Ty
(a) A meximum at r = Ty > ry; in accordance with the definition of

ng:

(b) =2 point of inflection at a radius between the two inter-

sections of ng with ¥(r),

(¢) a minimum at some radius r < r, for which ¥(r) = vy = ng,

(@) = negative slope at r = r,

(e) o lr M) = o (r, ).

e

Figure 12b represents this behavior for a collector radius ro-

The case where T, > Ty is of special interest. An important

aspect of it will be dealt with in the next section.
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Fig. 11. Graph of a y-function for the case of a potential
for which rij < rg.
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Fig. 12.
¢% at r

t .
rl < ri.

r¥,

rs
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|
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(a) For M? = Miz, b (1)
has a zero-slope inflex-
ion point at r = ri.

(b) For M = M2, the
maximum %(rg ,M? ) occurs
at rk = ro.

(c) The general case,
M2 < M2, with o¥ oc-
curring inside the
sheath.

Graphs of ®¢.(r) showing in each of three cases the maximum
Two possible sheath radii are shown, r, > rj and




5.9 PROOF THAT FOR re > ri THE EFFECTIVE POTENTIAL MAXIMUM CAN EQUAL

THE EFFECTIVE POTENTIAL AT THE PROBE SURFACE ONLY BY OCCURRING AT THE

PROBE SURFACE: 1i.e., Ty =L ifr;<r,

The title of this section describes an important aspect of the be-
havior of ¢.(r) for the conditions existing when ro > ry (see Fig. 11).

It is intuitively evident that for rj < r,, rx must be equal to Tae
From Eq. (47) r, 1s the radius at which the maximum ®e*(rk,Mﬁ) equals the
value ®e(rk)M§) at the probe surface. If the maximum @e*(rk,Mﬁ) were to
occur at a radius greater than re, then ®o(re,ME) could equal de*( Ty, ME)

only if there were to exist a minimum of ¢e(r,M%) between r_. and T

c

But according to the definition of T, the function ¢e(r,M2) has no minima

in the range r > r; which includes the range r > r. since r, > ry.

Thus clearly T =T, ifr, > r;; that 1is,the particular maximum

c
@e*(rk,Mﬁ) occurs at the surface of the probe, for the case ry < r, pre-
sently under discussion. This is indicated in Fig. 11 and its signif-

icance and consequences clarified by Fig. 12. For an analytical proof

that T =T, when r. > r; we examine the identity

Ir
kK gdo

O(rpptf) - o (1) = f —Far (54)

r

Let us assume that r, # Ty- In that case d@e/dr is positive in the

range r, < r < T and zero st LW since @e has a maximum at T and no

c
minimum for r > T (since all the minima are located in the range r < ry
and we consider now the case rc > ri). It follows that the integral on
the right-hand side of Eq. (5&) is positive definite. However, according
to the definition of r, (Eq. (47)) the left-hand side of Eq. (54) vanishes.

These two conclusions are contradictory. Therefore, the initial as-

sumption that r, # T, must be wrong, and we conclude that
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r, = T if ry <r_. (55)

Consider for a moment the applicability of Egs. (48) and (52) to
Eq. (55). Obviously, @, = &, when rp = r,. Therefore, both Egs. (48)

and (52) are identically satisfied when T, =T,

3.10 EVALUATION OF K, AND vy, FOR THE CLASS OF POTENTIAL FUNCTIONS
DEFINED BY THE RELATION o _* = KVMEV

2
In this section the properties of @e(r,Mk) will be used to evaluate

K, and v, first for arbitrary ry and then for the special case ry < r,.

If ry is arbitrary, we can have r > r,. By definition of Mﬁ in Eq. (47),

the unique maximum Qe*(rk’Mi) has +the same value as @e(rc,Mi). If vy >,
then rp > r,. This is illustrated in Fig. 12b for a collector surface

with radius ré.

Using Eq. (46-3), and its derivative with respect to M2, both

evaluated at M? = M?

[ » We can solve for Kv and v for arbitrary rj. From
Eqs. (46-3) and (47) we obtain, at r = rg,
M
o *(r, ) = o (r,, M) = S+, = K, MV, (56)
2mr,
Solving this for K, gives
o, + M§/2mrc2
KV =" (57)

2V
My

In order to obtain an expression for v, we take the derivative of
both sides of Eq. (L46-3) with respect to e and evaluate it at M = M%'

For the left-hand side of Eq. (46-3) we obtain
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0% (M2) | //) M . g% ) (58)
() 'M% (M ) 2mr*® ) Me

In carrying out the differentiation we must recall that r* is a function

of M2, and that it becomes r, when M2 = M2. We then obtain

Q*(ME)‘ 1 //M2 5 aI‘*
= k = mrkq)i{) ‘ (59)
2mrk2 mrkB\ B(ME) I\%
In Eq. (59) we used the notation
Op* od
joAlel = 22 = 60
Ar* or k (60)
Tx Tk

Because of Eq. (50) the parenthesis in the second term on the right-hand

side of Eq. (59) vanishes, so that the slope of @e*(MQ) at Mk2 is

30*(MF) .
e =
o(M ) Mk 2mry
Differentiating the right-hand side of Eq. (46-3) we cbtain
B(KVMEV)( -
—_ = VK MEVT (62)
v
s0f) & |
On equating Egs. (61) and (62) we get
2
v o= Mk (63)
2 2v
2mrk KVMK

If Eq. (57) is substituted into Eq. (63) and M% is replaced by wk’ the

expression for v becomes
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¥y f2mee

2
®c+wk/2mrC

which is correct for arbitrery values of ry, i.e., rj z r It should

be pointed out that v and KV are by definition independent of M. There-
fore, the evaluation of Eqs. (61) and (62) for M2=Mi is merely a matter of
convenience. The expressions for v and K, are valid for all values of M

for which ¢ has a maximum. Equation (57) can be rewritten by setting
e

= . Thi i
Mi wk is gives

b+ V¥ /2mr2
K, - — = ¢ (65)
2

where the exponent v in the denominator is given by Eq. (6L). Equations
(64) and (65) are the desired expressions for v and K, for r; z T If
ry > r., then the effective potential @e(r,Mﬁ) has both a maximum and a
minimum in the sheath region. In that case the value Wk, and thus also
the parameters Vv and Kv given by Egs. (64) and (65), depend on the parti-
cular form of the potential function ®(r).

If, however, r,<r_, thenr, =r_, and Eq. (50) can take the form

¥y = mr%@é. Using this in Eqgs. (64) and (65) one obtains for ry <7T

]
20 + 1 O
K, = ———=¢ (66-1)
By
2(mrc®c)
r.o.
V = ——— (66-2)

20 + r O
c cc

It is clear that for the range of values r; < r, once the potential

energy function ®(r) is known, Kl’and v can be found, provided &(r) be-
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longs indeed to the class of functions defined by Eq. (L6-2) in terms

of the loci of the maxima of the effective potential ®e.

5.11 THE ADMISSIBLE SPACE FOR THE CONDITION ry > r.

Next we examine the '

'admissible space,” in the (E, M2) plane, for
effective potentials satisfying the condition (46-2) and for the case

rj > re Wwhich implies both a maximum and a minimum in @_(r). (See Fig.
12 with probe radius ré.) From the definition of Mﬁ Eq. (47) it fol-
lows that any inward moving particle of angular momentum MK and energy
E> ®e*(rk,M§) will be able to reach the probe. TFor M < Mi, a particle
with energy E > @e* (r*,Mg) can reach the probe, because then ®e(rc,M2)
will be lower than the maximum @e*(r*,Mg). On the other hand, if M? > Mﬁ,
then Qe(r%,M?) >>®e*(r*,M2), as illustrated in Fig. 12, Therefore, in
order for such a particle to be collected, it is not sufficient for its
energy to be larger than the maximum @e*(r*,Me). Instead the requirement
in this case is E > @e(rE,ME). Thus, when ry > r., the admissible space
is generated by the following relations, illustrated in Fig. 13 (see Fig.

12 with collector radius at ré):

E> 0% = KVM2V, if OSMB5N§ (67-1)
M e M2 2 |

E_>_<I>e(rc) = > o, if M <M <o (67-2)
2mrc

3.12 ABANDONMENT COF THE CONCEPI OF A WELL-DEFINED SHEATH OUTER
BOAUND IN FAVOR OF AN INFINITE SHEATH RADIUS

As discussed in the Introduction, and in Chapter III, there are
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Fig. 13. Admissible space diagram from Egs. (67-1), (67-2), for
a y-function of the form illustrated in Fig. 10 with r; > rc.
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serious logical inconsistencies in presuming that there is a well-defined
outer bound to the sheath. Realistically not only the potential energy
function but also all of its radial derivatives must be presumed to be
continuous through the sheath into the plasma. Such continuity demands
that the sheath potential approach the plasma potential asymptotically
with increasing radius; thus there can be no well-defined sheath radius.

There exists a range of values of the radius within which the merging
of the sheath into the plasma occurs. Any plasma will exhibit random
potential variations, and the sheath may be considered to have merged
into the plasma when the difference between the sheath potential and that
of the undisturbed plasma is small relative to the random spatisl vari-
ations in plasma potential. In terms of experimental systems, this may
occur at a relatively small distance from the probe surface.

Mathematically the merging of the sheath into the plasma is pro-
vided for by letting the sheath radius become infinite (rsam) and requiring
that both the potential and the potential gradient be zero at infinite
radius. That is, $ = O and ¢' = O at r = r, = w.

Of course this makes the sheath include the region some suthors have
described as the "potential well}'6 a region that resembles the plasma in
having very nearly equal electron and ion concentrations, but resembling
the sheath in exhibiting a significant radial potential gradient and a
significant flow of charged particles of one sign or the other or both
toward the probe. The "potentisl well" concept represents a reasonably

good approximation to reality. It corresponds in general to the concept
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of an ambipolar diffusion envelope around the probe, paralleling in some

degree descriptions by Tonks7 and others8’9 of ambipolar diffusion in
laboratory plasmas. Thus when, for purposes of orbital analysis, we ex-
tend the sheath radius to infinity, we must recognize that we are including
in the sheath two types of regions having wholly different properties.
Any self-consistent analysis of the sheath potential must be handled ac-
cordingly, as for example by using what has been called the "combined
plasma-sheath equation."7’8
In the region close to the probe, particles of one or the other
polarity dominate, so that space charge has a major effect on the po-
tential distribution.

In the outer or transition region the positive ion and electron charge

densities are undoubtedly very nearly, equal; particles of each polarity

are themselves in thermal equilibrium, but may be at different temperatures.

The potential gradient and net flux of particles to the probe are not zero.
The flow of the heavy particles (ions) to the probe may either be governed
by a "mobility' affected by collisions, or they might fall essentially
freely without collisions.
3.13 ORBITAL BEHAVIOR AND ADMISSIBLE SPACE FOR AN INVERSE-POWER-LAW
PCTENTIAL FUNCTION
In this section the orbital behavior of particles moving in a po-

tential of the form
o
T
o = <I><—9> (68-1)
c\Tr
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will be discussed. Here & is some positive number and ®. is negative.
The sheath radius for such a potential is infinite, i.e., >0 and ¢'-+0

as r»w. The gradient is

= 71 (68-2)

It is useful also to state the corresponding expression for the space-
charge density, obtained by employing Eq. (68-1) in Poisson's equation.
The results are:

For the infinite cylinder:

2.0
-0, O
= _—) = 68~
P eo<q> R (68-3)
For the sphere
2N\ ala - 1)7%
p = €°<—E;> ——ZETfrzs—— (68-4)

For the sphere the case @ = 1 corresponds to the space-charge-free
situation; for the infinite cylinder the space-charge-free potential
has a logarithmic variation and so is not included in the family of po-
tential functions defined by Eq. (68-1). This zero-space-charge po-
tential for an infinite cylinder has a zero gradient at infinite radius
like the potentials of the form (68-1), but unlike them it becomes in-
finite at infinite radius.

We note the following aspects of the potential (68-1):
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I'k=I’

(a) The use of an arbitrarily assumed potential function cor-

()

c

follows:

responds to assuming a specific radial distribution of space-
charge density, as in this case described by Egs. (68-3) and
(68-4). Note that for & > 2 the space-charge density must
a+2
vary at 1l/r .

If o > 2 in Eq. (68-1) then ¥(r) of Eq. (28) is a monotonically

decreasing function of r, because ¥(r) then has the form:

ra
Wr) = m<-®c>;ﬁ§?— (69)

As discussed earlier, the locus of the extrema of the effective
potential @ _*(r*) is obtained by solving the equation ME = y(r*).
If ¥ (x*) > O the extremum is a minimum, and if ¥'(r*) < O it is
a maximum. Hence, the effective potentials associated with a po-
tential of the class (68-1) have only maxima if @ > 2. Conse-
quently, if & > 2, the logic leading up to Eq. (55) applies

and requires that Ty =T that is, the maximum of the function
@e(rk,Mk2) must occur at the probe surface, r = L
For any non-negative value of & in the power-law potential (68-1)
the separability condition (46-2) is always satisfied; this will

shortly be shown for the case & > 2.

For the moment, the treatment will be restricted to the case & > 2. Then
as noted in (b) above. This situation is illustrated in Fig. 14

for M2 < ng, M2 = ng, and M2 > ng. We may then write Eq. (46-3) as
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y-

%—r*@'* o = K (mrxoo%)Y (70)

where we have substituted mr 29' for M® from Eq. (27-1). ©Now, Egs. (68-1)

and (68-2) become at the maximum o _¥

C

o' ¥ = (-0.) ———o (71-1)
¢/ o+ 1)
ra *
N (71-2)
Introducing these into Eq. (70) yields the following equation
o * -
(-0,) XE - 1) = [m(-0):8] x,*(2 - v (72)

As r* is a function of M?, while none of the other quantities depends
on M?, this equation is satisfied only when the exponent of r* is zero.

Therefore we find that

Vo= (73)

According to Eq. (46-3) this value of v, together with the cor-
responding value of Kv given below, determines the maximum ?.,* and its
locus r*, provided that the potential ®(r) is of the form (68-1). These

maxima have meaning only if r* > r_. Direct evaluation of v from Eq. (66-2),

c
confirms the value for v given by Eq. (73).

The value of K, corresponding to the v of Eq. (73) is,

(-00)( - 2)

v . Emr%(_q)cﬂo.'7(a—2)

~
l
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Fig. 14. Graph of the effective potentials, ¢.(r) for an inverse-
power-law potential function ¢=0,.(ro/r)® with a > 2; also shown
is the locus o¥(r¥).
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For convenience Eq. (73) and an alternative form of Eq. (74) will ve
repeated in Eq. (75). These expressions evidently apply to the case
Q > 2, and to some extent more broadly as discussed in a later section;

they are valid for any M

voE 7 (75-1)
K, = — a-2 (75-2)
o _@C)e//(a‘-%)nar% )oc/(a -2)

This last equation is precisely of the form that is directly obtainable
from Eq. (66-1). Since Eq. (66-1) applies to the case of a monotonically
decreasing ¥(r), it is therefore valid in the range & > 2 (see Eq. (69)).
The fact that Egs. (75-1) and (75-2) are independent of M? shows
that the separability condition (L4L6-2) is satisfied in the case of the

inverse-power-law potential (68-1) with & > 2, as has been claimed above.

Substituting Eq. (71-1) into Eq. (27-1) with r = r* = T, =T,
we obtain the following expression for Mk2:
W = omro(-0 ) (76)
k c c’*

This expression is valid for potentials of the form (68-1) witha > 2.
It defines the angular momentumMk for which the corresponding effective
potential @, has its maximum at the probe radius.

Figure 14 illustrates the locus, @e*(r*), of the maxima for the
by Eq. (68-1). The equation for the locus

curve for the given model is obtained from Eq. (46-2) by using Eq. (27-1)
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for M°, with ' as in Eq. (68-2), and with Eqs. (75-1) and (75-2) used

for v and Kv' The locus equation so obtained is

o
(De*<r*) =~ (—@c) @ -2 Q%) (77)
2

The value of r*/rC as a function of M2 for any locus 1s obtained by
eliminating @' * between Egs. (27-1) and (68-2), evaluated at r*, and
using Eq. (76). The result is

* ,Mg\l/(e*x)

=

e \Mkz)

(78)

Combination of the last two equations give: @e*(r*) as a function of Me;
thus

24 (R) = (-0 3 2( M y7e (79)
e = (-%¢ > \J@Z§> 79

when Eq. (68-1) applies, and o > 2.
Equation (78) can be rewritten in terms of the function ¥(r) since

at the maximum of @e by definition Me = V¥(r*). Hence, one obtains,

1
(r*/rc)

Y(r*) = ¥y (80)

a -2
This is illustrated by Fig. 15.

Figure 13, with Mk2 given by Eq. (76), represents the admissible
space for the dynamical system based on the inverse power law (68-1) with
Q > 2, because this system satisfies Eq. (h6-2), and Fig. 13 is adequate

for any system that does so.
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Fig. 15. Graphs of w(r) for various values of o in the power-

law-potential Eq. (68-1).
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3.14 DISCUSSION OF POTENTIAL FUNCTIONS DIFFERENT FROM ANY INVERSE
POWER LAW, BUT WITH SEPARABLE LOCUS-OF-MAXIMA EQUATIONS

Illustrative potential functions different from Eq. (68-1) might
be postulated that would satisfy Eq. (46-2) or some equally useful separa-
bility condition, and at the same time have one or more of the following
properties not possessed by Eq. (68-1). Thus such functions might con-
ceivably

(a) Dbe of forms giving the curve of ¥(r) both increasing and de-

creasing portions as illustrated in Fig. 10, thus permitting
minima as well as maxima of ®e, with the locus of the maxima
obeying Eq. (L6-2) or some equelly separable function.

(b) be of forms that permit the model to have a finite sheath

radius, with both &(r.) = 0 and @' (rg) = O.

The model outlined in (b) has the weakness that it permits the
second, third, and higher derivatives of ¢ to be discontinuous at the
sheath edge. It is intuitively reasonable to expect the true model to
exhibit continuity in all derivatives of the potential at all values of r.
One of the merits of Eq. (68-1) is that, by abandoning the concept of a
finite sheath radius, it does retain continuity of all derivatives of o
for all values of the radius.

However, it is certain that the actual potential variation is much
more complex than Eq. (68-1), and that the loci of the maxima of the
effective potential do not obey Eq. (L6-2), nor any similarly separable
function. DNature is not that kind to us. Yetone learns a great deal by
studying the model (68—1) for & > 2, which satisfies the separability
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property (46-2) and pushes r_ out to infinity.

s

Undoubtedly one useful potential model would be the sum of two po-
tentials, one corresponding to the space-charge-free potential variation,
the other describing the potential due to the existing space-charge density,
whatever it may be. For spherical geometry this would employ & = 1 in Eq.
(68-1) to describe the space-charge-free behavior with some other function
describing the effect of the space charge. This second term would be of
opposite sign to the first, because the charge causing it would be of opposite
sign to that on the surface of the probe. For the cylindrical geometry, the
space-charge-free term would have the form & = P (1n r/rC + 1), which is
obviously not of the form (68-1).

3.15 ADMISSIBLE SPACES FOR ARBITRARY POSITIVE VALUES OF THE EXPONENT
IN THE INVERSE-POWER-LAW POTENTIAL (68-1)

It is desirable to discuss the properties of a model that uses the
potential function (68-1) with arbitrary positive o. Negative values of Q
are excluded because the purpose of introducing the potential function
o = @e(rc/r)a was to set up a model having an infinite sheath radius, i.e.,
to provide an asymptotic approach to ® = 0 as r > .

If we plot v vs. & from Eq. (75-1) as is done in Fig. 16, we get a
singularity at @ = 2, and we find that v + 1 as @ > ». Only non-negative
values of v are of interest because ®.*% in Eqs. (46-2) and (L46-3) is
identified with the maxima of ®o(r). In any realistic model the maximum
value of the effective potential must of necessity be an increasing
function of the angular momentum. This is a direct consequence of the
definition of the effective potential Egq. (26). We note that for an

arbitrary potential ®(r) the effective pcotential ® (r) increases with
J VM ¥ /
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Fig. 16. Graph of v versus a as given by Eq. (75-1) in the
case of the power-law-potential given by Eq. (68-1).
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M for fixed values of r. Therefore the ®.(r) curves for different values
of the parameter M° (e.g., Fig. 4) cannot cross one another, and it follows
that the maximum value @e*(rl*,MIE) must exceed the maximum value @e*(rg*,Még)
if M12 > M2, Le., 0. *(r¥,M2) is an increasing function of M®, and therefore
negative values of v have to be ruled out.

According to Eq. (73) & must be larger than 2 to assure positive values
of v. From Eq. (69), furthermore it can be seen that ¥ is a monotonically
increasing function of r if @ <2, and, as has been explained earlier, in
that case the effective potentisl @e has no maxima, but only minima. Since
the parameters v and Kv have been defined in connection with the maxima of
¢, it follows that the separability property (46-2) is satisfied by in-
verse power potentials of the form (68-1) only if o > 2.

Attention is next given to the special case & = 2. In that case
v is not defined by Eq. (73). 1In fact, the effective potential becomes

then
o (r) =(/g; + o.r2)/r2 (81)

which has no extrema. Since this treatment is concerned with attractive

potentials (i.e., ®_ < G), the effective potential vanishes for all values

c

of r if
M = -2mre2e.. (82)

This value of M® is easily seen to be the value of ng for & = 2 (see
Eq. (76)). Figure 17 shows a set of curves of @e(r) witha = 2. It

should also be noted that the corresponding ¥-function is a constant, i.e.,
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Fig. 17. Graphical representation of ¢, when o = 2 in the poten-
tial (68-1). These second-degree hyperbolas represent Eq. (81).
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¥ = -2mr 20 . (83)

c C

Hence, there exists only one unique value of M? for which M = V¥, the
value given by Egs. (82) and (83). Obviously this does not represent an
extremum of the effective potential. The first derivative of @e vanishes
for this particular value of M° for all values of r simply because ¢, it-
self is constant.

It has been discussed in Section 3.4 that any potential with a non-
decreasing V-function satisfies the conditions for applicability of Lang-
muir's equations. This also includes the case of constant ¥. In particular
it has been shown that the inverse square potential is the orbital-motion-
limited case for the set of potentials having constant ¥ functions. There-
fore, the admissible space for potentials of the form (68-1) with o = 2 is
given by Egs. (45-1) and (L45-2).

Considering next the case 0 < & < 2 we note that the V-function is now
monotonically increasing as illustrated in Fig. 15. The effective potentials
corresponding to this range of @ have minima, as shown in Fig. 8. This leads
again to the admissible space described by Egs. (45-1) and (45-2). As has
been explained in Section 2.4, the range @ < 1 is physically meaningless in
the case of a spherical probe. We conclude therefore that potentials of
the form (68-1) give rise to the orbital-motion-limited current-voltage
characteristics derived by Langmuir, if O <@ < 2 in the case of a
cylindrical probe or 1 <& < 2 in the case of a spherical probe.

For very large values of & the sheath thickness becomes small and
the collection is no longer determined by the orbital motions. In the
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limit @ + «, the potential ¢(r) vanishes for all values r > r, and equals
®. at the collector surface, r = r,. Hence, the potential gradient is
zero for r > r, and becomes infinite at r = r,. The collected current
should approach the random current in the limit & = . In order to

verify this statement, we note first that the maximum ®¢ can be ex-

pressed by substituting Eq. (76) into Eq. (79) to obtain

2 a/(a-2)
*¥,.0 a - 2 M
o, (M) = (-94) (79-1)
€ ¢ 2 amre2( -0¢)
It is easy to show that
2
M
Lim o *(M2) = 5 for 0< M < . (79-2)
O+ oo 2mre

From Eq. (78) it follows furthermore that

lim r* = Ta
a—>oo

Hence, since ?, has its maximum value at the collector surface, the re-
quirement for collection is that E > &o(r.) for all values of M2, which

means in view of Eq. (79-2),

E>—2—M2 for 0 < M® <
y o,
- 2mre -

The admissible space defined by this expression is illustrated in Fig. 18.

By integation of Edq. (97) below it can be easily verified that this ad-

missible space leads to the random current as has been claimed above.
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Fig. 18. Admissible space diagram, from Eq. (83-3), for the in-
finitely thin sheath around an electron accelerating probe de-
scribed by letting o~ in the potential function (68-1).
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IV. THE VOLT-AMPERE EQUATIONS

4,1 GENERAL EXPRESSIONS FOR THE CURRENT
In this final chapter the expressions for the current collected by
an accelerating probe will be set up in general form and then integrated
between the limits of integration described by appropriate admissible spaces.
Let £(T) be the velocity distribution of the particles, and T the ve-
locity vector of a particle at any instant. The flux density Jr of electric
current carried toward the probe by the particles crossing a particular

closed surface at which the velocity distribution is known is given by:
J. = afd@u . n £(7) (8k4)

where q is the electric charge carried by each particle and Q is the in-
ward-pointing normal unit vector. The integration is to be carried out only
over inward-bound particles and, among them, only those destined to arrive at
the probe. Thus "admissible space" criteria govern the integration limits.

T . ﬁ is taken positive when pointing in the direction of the center of the
force field. The closed surface chosen for this integration can be the outer
radius rg Of the sheath, or it might be a "sheath edge" surface as intro-
duced earlier in Section 2.1. Because the inward orbital motion involves
loss of radial energy to angular energy, the orbital behavior in the acceler-
ating field causes marked departures of directions of motion from an initial
random distribution. Therefore, the closed surface at which the integra-

tion is to take place should be far enough so that this effect of the probe
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on the velocity distribution is as yet insignificant.
If the known initial velocity distribution is the Maxwell-Boltzmann
distribution function, then for a cylindrical probe Eq. (84) may be written

as:

2, 2, 2 '
N q U, + ug + u +(2(I>/m)
Jp = z;;§;372 I du, duy du, u, exp [Z z = z
(85)

where, as earlier in this paper, U,, Uy, U, are the velocity components

in the axial, tangential, and radial directions, respectively, ¢ = NQSEEZE

the most probable velocity, k is Boltzmann's constant, T the temperature,

and ®(r) the potential energy of the particle at the radial distance r.
For a cylinder of infinite length, which is the model used here, the

admissible values of u,, are from -o to +w, and u, is independent of U,

and uy. Therefore Eq. (85) may immediately be integrated with respect to

u, and rewritten for the cylinder as

C

N_q 3 2
Jp = =25 [ [ aug dupuy exp {_1—2 (uf + o+ 2 q’):l (86)
e

For a spherical probe we define u,, ug, u¢ to be the components of
T along the radial, polar, and azimuthal directions, respectively. Since
the motion of a particle in a centrally symmetric field is planar, the
components Ug and u¢ may be reduced to one tangential component ut by

introducing polar coordinates as follows:
ug = ug cos Y (87-1)
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u¢ = u sin 7 (87-2)

where 7 is the angle between the plane of motion and the plane containing
ug and the polar axis. With this change of variables Eq. (84) may be
written for the sphere as
N od (‘ -
I ———5;57— I 1] duy du, gy u, ug  eXp L-—g (u + ut + mQﬂ (88)
where, once again, the integration is to be carried out over the inward-

bound particles and with limits established by admissible space criteria.

Since all planes of motion are equivalent we integrate Eq. (88) with respect

to ¥ from O to 2n and write for the sphere

2N _q — -
— o 1 2 g !
Jp = W 1]:11‘{% dut Uy dur u. e 4 -—2 u% + us + oo @)! (89)

We may now transform the variables of integration of both Eq. (86)

and Eq. (89) from the velocity space (u,, uy) to (M,E) space, as follows:
E == m(u 2+ u2) +0 (90-1)

2 t T
M = mru. (90-2)

The second of these equations can be used to eliminate ut2 from the first

resulting in explicit equations for the velocities in terms of M and E,

oWl - M,
mer

(E - @), (91-1)

Slf\)

ug = ﬁ% (91-2)

The transformation of the (dut dur) area element le(ur, ut) space to the
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(dE dM) area element in (M, E) space takes the form

o(uy,
dup, duy = -é%§53§l dE dM. (92)
:,M

By the use of Egs. (91-1) and (91-2) the Jaccbian'® is found to be

o(u,,u;) 1
— = (93)
J(E,M) mru,
Therefore,
du, duy = - dE aM (9k)
m Yruy

The variable r in Egs.(90), (91), (93), and (9%4) is of course the radius
of the surface at which the velocity distribution is known. But the cur-

rent density is that at the probe surface, denoted by Je. The two cur-

rent densities are related by the equations

Jo = Jj L (cylindrical geometry) (95-1)
Te
2

Jo = Jp 5_2 (spherical geometry) (95-2)
Te

Applying the transformation (91-1), (91-2) to the integrals in Fqs. (86)
and (89) and using the relations (95-1) and (95-2), one obtains the fol-
lowing expressions for the current densities at the probe surface.

For cylindrical geometry:

Noa

E
Jo = ;Egag;;' ﬁq&:dEdM exp(*Ef). (96-1)

For -spherical geometry:
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B 2Nog _E -
J, = <ﬁg—c5—m§_r§ jM % dE dM M exp( —k'—f) (96-2)
c

The last two equations may jointly be written in the form
J. = Jy hy [ [, dE aM M ex (-E~) (97)
c T~ 0™ M 'E T PATT

where 8 = O for the cylinder, 8 = 1 for the sphere, and

)
ol |
N
O
(09
S

Jg = Ngoq

26

kT(Emrng )(aﬂ)/gr (il /2

For 8 = 0 and & = 1, respectively, hy reduces to:

1
h = - (cylindrical geometry) (100-1)
o) /e
(kT) / V2nmr%
hy = — L (spherical geometry) (100-2)
2( 2
mr o (KT)

4.2 INTEGRATION OF THE GENERAL EXPRESSICN FOR THE CURRENT

The limits of integration are determined by the assumed potential
model. Various potential models have been discussed in earlier sections.
For example, the admissible space defined by Egs. (67-1) and (67-2) applies
to effective potentials which have the property (46-2). This property is
quite general and includes the case of effective potentials which have both
a minimum and a maximum, as has been discussed in Section 3.11.

In Eq. (97), we may set M° = x, and write
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E=o (B1)/2

Jdo = Jg = f kf dE dx x exp(-E /kT)

fX=°° fE=oo

2 X
xX=Mp E= + 0
e

aE ax £D/2 exp(-E/kal (101)
. i

The integration with respect to E is straightforward, leading to

hg kT =My o K, x"
Jo = Jo—5— |/ K 0V exp(-;—T

X=0

% @ (BD/2
+ exp( kT) fg dx é exp <} ngggéj} (102)

This can be rearranged to yield the following expression:

(8+) /2v o /2
o - o2 Y R

)
2

KV/J y=0

g 5+1
D, =00

+ exp (— Eé) (2mr§kT) 2 f > 5 dyy(g)'l)/2 exp(-;;
8L y=Mg /2mrEkT ,J

(103-1)

where the variables of integration have been changed by using

y = (Kv/kf)l/vx in the first integral, and y = X/erng in the second
integral. Now let yY = z in the first integral, to convert the expres-
sion into the following:

Mo kT | om O71)/2v z=K Miv/kT
B (kT , 1 v

— Al - o) >
JC = JO -EF KV,/J v f dz Z( +l>/?V e

xp( -z)
Z=0
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o) S Y= +
+ exp <} E%>(2mr§kT§b&)/2 fM2/2 2y dy Y-l+(6 L/ eXP(-Yi]
y=th jemr

(103-2)

This may be expressed as

(3+1)/ -(8+1)/2 - ] KM§V>
% - ey L( 5} <emr§m> 62,
8+l (104)
eXp ( > " omr EkT

where the incomplete gamma function 7(§,x) is defined as

+

b=x E-1
y(&,x) = [ dt t” " exp(-t) (105-1)
t=0
and we recognize that
£ =00
r(ex) = [ av et hes(-t) = I(E) - (4,0 (05-2)
=X

Equation (104) represents the accelerated-particle current to the
probe, with & = O corresponding to the cylindrical model and & = 1 to the
spherical model. The radius of the probe is arbitrary, so that Eq. (104)
applies to a V¥-function of the general shape shown in Fig. 10, whether

r, > To, Orr

o ; < r,, but satisfying condition (L46-2) on the maxima of

@e(r).

However, the case of special interest to us is the one where r, <r
(see Fig. 11), where in the range r > T, there exists either no extremum
in ®e or only a maximum as illustrated in Fig. 14k. 1In that case r) = Ta

according to Eq. (55) that is, the meximum value of 0o*(r*) equals its

value ®e(rc) at the probe surface only if the maximum occurs at the probe
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surface. For the class of potential functions, which have the property
(46-2) and for which ry <r,, the coefficients K and v are given by Egs.

(66-1) and (66-2), i.e.,

2<I>C tr CDE:

K, = ———=5 (106-1)
v By
2mrc®C
®|

y = e (106-2)

Mi = ¥ = V., = mré@é (107)

4.3 COLLECTED CURRENT EXPRESSIONS FOR THE INVERSE-POWER -LAW POT'ENTIAL
For an inverse-power -law potential function, as given by Eq. (68-1)
we obtained expressions (75-1) and (75-2) for v and K,, which can be written

in the following forms:

vo= g2 (108-1)
(-0c)(5-1)
K, = (108-2)
[amr%(—Qc)]a la-2)
where
Mi = Yo = omra(-og).

Now by substituting these expressions for v, K,, and ng into Eq. (104),

we obtain
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J Ne/e 1- (6+1)(a-2) /20 @) /2
c = 531\ (21@/ (a-2) * /

/(5+1 (6+1)(@-2)  (q.p) m‘))
+ exp {%%—) F(F)—é-l-, a(—%%%—)] . (109)

Equation (109) represents the accelerated current collected by a probe for
the inverse-power-law potential (68-1). The mode of orbital-limited cur-

rent collection is obtained by setting & = 2. Denoting the orbital-motion-
limited current density at the probe surface by Jomi, Eq. (109) becomes for

the case O = 2;

A)/2 6+1 \
Toml = a+1 Eﬂ(k}?ﬁb " xP('—) ; (110)

For ® = 0 and 8 = 1, corresponding to the cylindrical and spherical geo-
metries respectively, Eq. (110) takes the familiar forms given by Eq. (A-13)
and Eq. (A-14) in the Appendix.

For @ = », the right-hand side of Eq. (109) reduces to J,. Con-
sequently, in this mode of collection the probe collects the random cur-
rent, as was anticipated in comments in the last paragraph of Section 5.15.
4.4 CURRENT COLLECTION FOR A POWER-ILAW APPROXIMATION TO THE DEBYE PO-

TENTIAL DISTRIBUTION FOR A LARGE SPHERE

As a final example we will consider the Debye potential distribution
for a large spherical probe (Ay < rj << r.), and find a power law which

approximates it. The new notation is as follows:

Ok




op(r) The Debye potential function

The Debye length.

&
|w}
1l

Thus

r r-r.,
op = Do == exp<; < (111)
r >\D )

By using this potential in Eq. (106) we get

retp

rohp

VvV =

(112)

We are now looking for a particular potential of the form (68-1) which
has the property that the exponent v, given by Eq. (108-1) is equal to
the expression of v (112) for a Debye potential. The two values of v are

equal if

a = (113)

= (114)

It can be shown that for values of r close to T, the potential (11k4) is
approximately equal to the Debye potential if rc/kD >> 1 In order to show
this we let r = r, + dr with 6r/rc << 1. Then Eq. (114) can be rewritten
in the following form,

r./r
C
¢ = % f‘———l?-7x5

(r/rcﬁ c (115)
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® = ¢, ——7— (116)

r 5
¢ 20, —Cepr%B if X% << 1. (117)

Hence, the volt-ampere relation for a spherical probe of large radius for
the case of a Debye potential can be obtained by using the expression (113)

for @ and & =1 in Eq. (109). The result is

- (118)
where X = rC/AD.

4.5 DISCUSSION OF THE VOLT-AMPERE RELATICNS
The accelerated current density at the collector (cylindrical or
spherical), for a power law potential, is given by Eq. (109). For the

cylindrical geometry we set & = O and obtain,

J = J 7'%0%/0[ (a-2 “(mf_)fea 22 _p_ (a-2)
co 0] \ o . J_ Y W’ oc
L n
+ exp(-0pc) - erchJ-¢oéiE} (109-1)

where O, = QC/KT < 0 is the dimensionless potential energy at the col-

lector surface.

If we plot Jco/Jo against (—@Oc) for fixed values of & we would an-
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ticipate that for increasing O the ratio Jco/Jo would uniformly decrease

i.e., if & > Oy then Jco(al) < J.o(0p) for all values of (-0 In other

oc)'
words, the larger the values of & the smaller is the current density at

the probe. The plot of &o/Jo against (-®,,) for various values of & is shown
in Fig. 19. The first curve for @ = 2 is the oribital-motion-limited form

of Eq. (109-1). The rest of the curves are for higher values of O as shown.
One observes that for & > 2 the saturation region is attained progressively
faster. The decreasing character of JCO/JO for increasing @ is illustrated
in Fig. 20. These curves also show that in the range O <& < 2 the current
is independent of &, which is not surprising since Langmuir's theory applies
in this range and his volt-ampere characteristics are independent of the de-
tailed structure of the potential. Table I lists the values of Jco/Jo for

different & and @, calculated from Eq. (109-1).

For the spherical probe (8 = 1) Eq. (109) reduces to,

o N 2/
Je1 = Jof‘\—gé _(]OL-E) / v4 \Oc—a'g , —%C(Oé-2)>
+ exp —®OC(1412H (109-2)

where ®,. again is the dimensionless potential energy (@C/KT) at the col-
lector surface, and for attracting potential it is negative.

Figure 21 illustrates the behavior of Jcl/Jo as a function of (-@OC)

(Bq.(109-2)) for various values of &. For any fixed value of (-0 the

oc)
decreasing character of Jcl/Jo for increasing & is evident. Figure 22
illustrates that behavior for some representative values of (-b_.). These

curves have been drawn for the range & > 1 since the case & < 1 is

physically meaningless as has been discussed in Section 2.4. Table II
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Fig. 20. Cylindrical probe (6=0). Dimensionless accelerated

current density (Jco/Jo) vs. a for various values of (-9,.).
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Fig. 22. Spherical probe (8=1). Plot of the dimensionless ac-
celerated current density (Jcl/Jo) vs. o for various values
Of (_ro).
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lists the values of Jcl/Jo for different values of & and ¢,, calculated
from Eq. (109-2).

In the volt-ampere characteristics of cylindrical and spherical probes
(Figs. 19 and 21) the values of the parameter & were considered independent
of &4, and X, where X is the ratio of the probe radius r, to the Debye
length Ap. If one represents the potential distribution in the sheath by
an inverse power law of the form (68-1), the exponent & will of course
depend on the probe potential ¢,. and the parameter X. This is merely
a consequence of the fact that the rate at which the potential disturbance
decreases radially (which is controlled by &) depends on the probe po-
tential and on the electron temperature and density. In a realistic sheath
model, as pointed out earlier, the potential function must be determined
in a self-consistent way together with the charge density. In the fol-
lowing section the relation between &, ¢,., and X, will be obtained nu-
merically by comparison of Egs. (109-1) and (109-2) with the volt-ampere

relations obtained by a self-consistent treatment of the problem.

4.6 COMPARISON WITH THE RESULTS OF A SELF-CONSISTENT ANALYSIS

Using numerical methods Laframboise2 has recently carried out a self-
consistent field analysis of the potential and volt-ampere current rela-
tions for cylindrical and spherical probes. Tables III and IV contain his
calculated values for the respective probes and Figs. 23 and 24 show the
corresponding characteristic curves. For the determination of @ as a
function of ®,, and X we took the values of the current from Tables III
and IV, inserted them in Egs. (109-1) and (109-2) respectively, and in-
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verted these expressions numerically to obtain the corresponding values
of & for given values of ®oc and X. Figure 25 illustrates &, for the
cylindrical probe as a function of (-@oc) for various wvalues of X and
for the temperature ratio Tiopn/Tejec = 1. Figure 26 shows @, for the
cylindrical probe, as a function of X for various values of (-®u.).
Table V contains these calculated values.

Similarly, for the spherical probe, Fig. 27 illustrates O as a
function of (-@,.) for various values of X, and Fig. 28 shows O as a
function of X for various values of (-®gc). The temperature ratio for all
cases is unity. Table VI contains these calculated values.

In order for an inverse-power-law potential to be realistic, the
exponent & should not depend on the probe potential &,.. Figures 25 and
27 show that @ i1s fairly insensitive to changes in the probe potential ®oc
for values of X less than about 5, except in the immediate neighborhood of
the plasma potential. In the range X < 5, @ 1s essentially constant for
(=®o.) > L. For a plasma of 2000°K = and a value of (-0,.) = 4 the probe
potential is about O.7 volt. Electron density data are generally cbtained
at higher voltages, where @ does not change anymore with probe potential.
From Fig. 25 it is seen that @ =2.8 if X =5 and ¢, , > L. If one compares
the X = 5 curve of Fig. 27 with the @ = 2.8 curve obtained by interpolation
from Fig. 19, one finds that the two curves are practically identical for
all values of ®Oc(even forl@ocl< 4). For X < 5 the agreement improves of

course.

In the case of cylindrical probes used for ionospheric measurements
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TABLE V

CYLINDRICAL PROBE (& = 0)

Temperature ratio Tion/relectron = 1. Values of & as a function of
(-®oc), for various values of X = ro/Ap, derived from Laframboise's
Table III of volt-ampere characteristics.

_ xX=5 %=10 x=20 x=50 X=100
oc a o o o o
0.0 2.00 2.00 2.00 2.00 2.00
0.1 2.235 2.23%6
0.3 2.508 2.892 3.648 4,070
0.6 2.195 2,719 3,304 4,141 4,679
1.0 2.%65 2.696 3,710 L.717 5.450
1.5 2.483 3.20% 4,082 5.281 6.09%
2.0 2.564 3.%59 4,349 5.693 6.596
3.0 2.680 3.559 4,720 6.299 7.367
5.0 2.77h 3,780 5.10 7.026 8.382
7.5 2.79% 3.860 5.295 7.488 9.071
10.0 2.809 3.881 5.375 7.738 9.507
15.0 2.795 3,866 5.401 7.964 10.001
20.0 2.77h 3.834 5.371 8.025 10.203
25.0 2.754 3.797 5.323% 8.028 10.337
100




}

TABLE VI

SPHERICAL PROBE (8 = 1)

Temperature ratio Tion/Telectron = 1. Values of & as a function of

(-®50), for various values of ¥ = rc/kD, derived from Laframboise's
Table IV of volt-ampere characteristics.

o xX=5 x=10 X=20 xX=50 x=100
oc o a a o a
0.0 2.00 2.00 2.00 2.00 2.00
0.1 3.397 4.336 5.242 7.054 7.956
0.3 3.767 4.6k 5.893 7.570 8.860
0.6 3.831 4.893 6.157 8.053 9.503
1.0 3.909 5.053 6.451 8.553 10.092
1.5 3.956 5.178 6.720 9.031 10.711
2.0 3.993 5.278 6.915 9.k422 11.226
3.0 4,018 5.397 7.210 10.04kL 12.177
5.0 4. 006 5.459 7.481 10.773 13.398
7.5 3.968 5,468 7.568 11.189 14,209
10.0 3.931 5.431 7.556 11.348 14.648
15.0 3.878 5.340 7.465 11.419 14.976

20.0 3.829 5.243 7.331 11.356 15.023

25.0 3.789 5.172 7.218 11.219 14,961
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X is usually considerably less than unity so that @ = 2, and Langmuir's

volt-ampere characteristics correctly give the collected current.
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V. CONCLUSION

Experimental data of excellent quality are now being obtained from
electrostatic probes both in the ionosphere and in laboratory plasmas.

The detalled shapes of the measured volt-ampere curves obtained would give
valuable information about plasma properties if the theory of these curves
were better understood. This requires the use of realistic models of the
potential structure in the sheath region. The need for such realistic, yet
mathematically tractable, potential models provided the stimulation for
undertaking this study.

This report illustrates the artificial nature of any probe theory based
on the use of potential functions that exhibit discontinuities of the po-
tential gradient, or of higher radial derivatives of the potential at any
specified sheath radius. Discontinuity of the gradient presumes a surface
charge suspended in space; discontinuity of the second derivative presumes
a step function in space-charge density; neither of these corresponds to
any physical reality. Thus a model might be considered in which the po-
tential and its first and second derivatives are all matched at a "sheath
edge' surface interior to the outer bound of the sheath.l 1In this case the
region outside the sheath edge would be a low-space-charge transition
region6’7’8’9 between the plasma and the high—space-charge steep-gradient
sheath region.

One of the most interesting aspects of the material presented is
the comparison between the results of the self-consistent field analysis

2

by Laframboise“ and the results of our calculations based on the inverse-

107



power-law potential (68-1)., In particular our results show that in the
range of parameters of interest in ionospheric applications our probe
characteristics agree very well with those of Laframboise.

Of course the'

"infinite" sheath radius should not literally be taken
to be infinite. It means merely that the sheath potential approaches the
plasma potential asymptotically. At a range of radius values in which the
difference between the sheath potential and the plasma potential has be-
come small relative to the inherent random variations in plasma potential,
cne is outside the sheath. Thus the " infinite radius" of the sheath can
in fact be a very short distance. One ought to think in terms of some
mean value radius, as one thinks of a time constant of an asymptoticaily
decaying circuit transient.

In summary, this study emphasizes the need for recognizing that,
to be reasonably in accord with reality, one must indeed use a sheath
model in which the sheath potential approaches the plasma potential
asymrptotically.

It appears from the present work that it is feasible to devise a
simple potentiasl function model that serves these purposes well. Of
course other equally good or better models may be found, but the inverse-
power-law function proposed here seems to provide a good compromise be-
tween the need for representing reality and the need for mathematical

tractability.
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APPENDIX

DERIVATIONS OF THE MOT'T-SMITH AND LANGMUIR EQUATIONS
FOR CURRENT TO CYLINDRICAL OR SPHERICAL PROBES FOR FINITE SHEATH MODELS

This derivation is carried out by using the domain of integration shown
shaded in Fig. 6 of the text, described as follows in accordance with Egs.

(36-1) and (36-2) of the text:

B> 2, ir0<i? <n? (A-1)
2mrg
M 2
E > o, IEME<W < w (A-2)
2mre
where
2.2
o 2mr “r.~(-0c)
M= = 5 5 (A-3)
(rg” - r.%)

To obtain the current density JC to a cylindrical or spherical probe for a

sheath of finite radius rg we apply the above Egs. (A-1), (A-2) and (A-3) in

Eq. (107) of the text, with symbolism as therein, and using W - ¥ the
result is:
h :M 2 E=00
5 x=Mg {s-1)/2 E
J. = J dE dx exp(-=)
c o 58 x=0 fE- X ol KT
2mrg
X = ® E = B
+ [ / dE dx XGJJ/Q exp( - Ef)
X = M52 E = % + q)c
2mre (A-L)

Integration with respect to E gives:
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= 2 d+1 -
h6kT X = MS 1 1 <
JC = - f dx x exp(- __—-—2)
2 X = 0 2mkTrg
5+1
® X = oo -1
+ exp Q—é—) ] 5 dx x ¢ exp - —X——2 (A-5)

x = Ms EmKI'I‘C

Use of new variables of integration y = x_/2mk.‘l"rs2 in the first integral, and

y = x/2mkTr .2 in the second converts this to:

hgkT | y = M2 o
o) = 2mkT 2
Je = & lfmrs’ff&*l)'/g rooF [2uTre® 4y y exp(-y)
2 y =0
(641) /2 ooy ¥ = S
+ (2mkTr, 2) exp(- ) J dy y eXp(—y)_I (A-6)
= M.52/2mk1‘rc2 _j

Now substitute for hg from Eq. (109) in the text, and for Ms2 from Eq. (A-3),

and express the integrals in terms of incomplete gamma functions as in Egs.

(115-1) and (115-2), to get

o+1 Te
;- Io fg) pr1 % c
¢ 1(__5*1) r, "2 Twrrf - 18
2

_(D 5+l -® r 2
Toexp (ﬁ>r<2 RT 2 - N 2) (A-T)
‘ s T “c

For cylindrical geometry & = O. The incomplete gamma functions then

become
2
-0 r 2 t = e e
y 1,__£ S = f KT rg® - re® gt t'l/g exp(-t)

27 kT 2 2 t =o

Ts ~ Te 5

-0 r
=-Jxn erf ETE __E__S__g (A-8)

r -,
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and

2 |
-0, 2 \ -0, g

1
T -2—).‘{_[, 5 ‘ 2/ =— \/—T( erfe kT P o) (A'9)

Thus the expression for the current collection to the inwardly-accelerating

N\ o
-0, rc2 - -@é) -0 rs2
: exp \ —)erfc
KT .2 _ .2 K KT 2. 2
s c ro-T,

(A-1

For the spherical probe, we cbtain by a similar procedure after using

infinite-cylinde; probe may be written as

o

8 =1 in Eq. (A-7):

These Eqs. (A-10) and (A-11) for the current were originally derived by
Mott-Smith and Langmuir using the velocity space domain.
In the orbital-motion-limited mode of collection, rs/rC + « and Eq.

(A~7) becomes

I 2 [/~2)\(®a)/2 o, 5+1 -%Q _
Joml = <8+ > 51 <RT> + exp (E —_ ‘—k‘-f> (A 12)
\—7 !

For the infinite cylinder, & = O, we get

2 [-% ~%c e | (A-13)
S N e A VO ki >

For the sphere, &

1
'_l
£
[0}
0Q
[0}
t

oy
]

JO < - ;% (A-1k)

111




Equations (A-13) and (A-14) are the well known orbital motion limited volt-

ampere equations of Mott-Smith and Langmuir.
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